Valliappa Lakshmanan

OK
About Valliappa Lakshmanan
Lak is Head for Data Analytics and AI Solutions on Google Cloud. His team builds software solutions for business problems using Google Cloud's data analytics and machine learning products. He is the author of Machine Learning Design Patterns, Data Science on GCP (O'Reilly), BigQuery the Definitive Guide (O'Reilly). He founded Google's Advanced Solutions Lab ML Immersion program. Before Google, Lak was a Director of Data Science at Climate Corporation and a Research Scientist at NOAA. He's the original author of several Coursera specializations including Machine Learning on GCP, Advanced Machine Learning on GCP, and Data Engineering.
Follow him on Twitter at @lak_luster.
http://www.vlakshman.com/
Customers Also Bought Items By
Author updates
Books By Valliappa Lakshmanan
The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice.
In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.
You'll learn how to:
- Identify and mitigate common challenges when training, evaluating, and deploying ML models
- Represent data for different ML model types, including embeddings, feature crosses, and more
- Choose the right model type for specific problems
- Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning
- Deploy scalable ML systems that you can retrain and update to reflect new data
- Interpret model predictions for stakeholders and ensure models are treating users fairly
This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability.
Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras.
You'll learn how to:
- Design ML architecture for computer vision tasks
- Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task
- Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model
- Preprocess images for data augmentation and to support learnability
- Incorporate explainability and responsible AI best practices
- Deploy image models as web services or on edge devices
- Monitor and manage ML models
Work with petabyte-scale datasets while building a collaborative, agile workplace in the process. This practical book is the canonical reference to Google BigQuery, the query engine that lets you conduct interactive analysis of large datasets. BigQuery enables enterprises to efficiently store, query, ingest, and learn from their data in a convenient framework. With this book, you’ll examine how to analyze data at scale to derive insights from large datasets efficiently.
Valliappa Lakshmanan, tech lead for Google Cloud Platform, and Jordan Tigani, engineering director for the BigQuery team, provide best practices for modern data warehousing within an autoscaled, serverless public cloud. Whether you want to explore parts of BigQuery you’re not familiar with or prefer to focus on specific tasks, this reference is indispensable.
Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build using Google Cloud Platform (GCP). This hands-on guide shows data engineers and data scientists how to implement an end-to-end data pipeline with cloud native tools on GCP.
Throughout this updated second edition, you'll work through a sample business decision by employing a variety of data science approaches. Follow along by building a data pipeline in your own project on GCP, and discover how to solve data science problems in a transformative and more collaborative way.
You'll learn how to:
- Employ best practices in building highly scalable data and ML pipelines on Google Cloud
- Automate and schedule data ingest using Cloud Run
- Create and populate a dashboard in Data Studio
- Build a real-time analytics pipeline using Pub/Sub, Dataflow, and BigQuery
- Conduct interactive data exploration with BigQuery
- Create a Bayesian model with Spark on Cloud Dataproc
- Forecast time series and do anomaly detection with BigQuery ML
- Aggregate within time windows with Dataflow
- Train explainable machine learning models with Vertex AI
- Operationalize ML with Vertex AI Pipelines